Personalized Foul Trouble

An Analysis of Fouling Out in the NBA
Sacramento Kings Case Competition Winners

Dani Chu, Lucas Wu, Matthew Reyers \& Conor Doyle

Simon Fraser University

Contact Information:

Dani Chu
 Matthew Reyers

dani chu@sfu.ca danichusfu.github.io Lucas Wu atthew reyers@sfu.ca

Conor Doyle
conor doyle@sfu.ca

SFU

BA players foul out whe Abstract
BA usually say that a player is is at risk of foolling out of of a game when they have more foul than the current quarter. This is called the $\mathrm{Q}+1$ rume. This generic foul mouble alculation treats al al players equally, despite many players having know
troundencies with respect to foul accuisition., our bojective is to cratively outline
tend tendencies with respect to foul acquisition. Our objective is to creatively outline
objective and personalized guidelines for a coaching staff to hande in-game foul objective and personalized guidelines for a cooching staff to handle in-game fou
management. To do so we used NBA play by play data from the $2014-2015$ seaso ot the $2016-2017$ season and looked specifically at the fouling events for each playe We then used a Cox Proportional Hazards Regression to relate predictors to surviviva
time. We then fit personalized survival curves for each player and foul number and ime. We then fit personalized survivial curves for each player and foul number anc tt that curve. Finally, we used those curves to simulate the amount of time tha a player would have remaining in a specific game, given the number of fouls they
have acquired. The results of our estimations were then built int an interactive too for the Sacramento Kings roster in 2016-2017. The tool can be expanded to any oster and year as required. We find that this personalized and data driven method to

Introduction

Current Practice

- Managing the minutes of a team's star player and maximizing their output is a difficult task
- Currently coaches typically use the " $\mathrm{Q}+1$ " methodology detailed in Maymin and Shen's research on early foul trouble [4] to determine if a player is in foul trouble
- If a player has more fouls than the current quarter of play they should be benched (ex. 3 fouls in the 2nd quarter.)

Shortcomings and Counterexample

In Ben Falk's article "The Trouble with Foul Trouble" [2] he recounts a cenario that unfolded in the first round of the 2018 NBA playoffs between e Cleveland Cavaliers and the Indiana Pacers.

- Victor Oladipo, the sole all-star of the Pacers picked up 2 fouls in the first quarter and an additional foul in the second quarter over 8 minutes of total playing time
- Oladipo would go on to play 20 minutes in the second half without pick ing up another foul and the Indiana Pacer lost the game by 3 points - Coach Nate McMillan sacrificed Oladipo's minutes in the first half in
order to maintain flexibility at the end of the game der to maintain flexibility at the end of the gan
- Falk points out that no foul management strategy can save a player's an have an offect on saving a plar's minutes sricg can have an affect on saving a player's minutes
"A player will play less in exchange for the ability to control when he plays."

Previous Work

- Katherine Evans suggests using a survival model to estimate the time until a player commits his next foul
- Evans considers how emotions affect the rate at which players pick up fouls, which she calls "tilting"
Evan's shows that fouling rates differ depending on the number of fouls the player has

Main Objectives

Creatively outline objective guidelines to present to a coaching staff about how to handle in-game foul managemen.

- Suggest an improvement to the current " $\mathrm{Q}+1$ " foul management strategy identified by Maymin
- Present personalized strategy at a player level for foul management
- Use Evan's process of fitting survival curves to different foul levels and extend it by fitting exponential distributions to the curves and combining them to gather a time to foul out distribution instead of simply a time to
- Take into account Falk's suggestions and identify foul trouble on a player by player basis, are more lenient earlier on, and help coaches rearrange minutes instead of limiting them.
- Providing the coaching staff with better information than they used to.

Trust the coaching staff to make a more informed decision regarding foul trouble

First Model: Cox Proportional Hazards

Survival analysis is an application of statistical methods focused on understanding the time until the occurrence of an event. Often used for death and customer churn calculations, survival analysis can be logically applied to fouling out in basketball. A common component of survival analysis problems is that of censored data. Data is censored when a measurement of a given unit. Dealing with censored data requires different methods than basic non-censored data. One of the well tested models for this case is then the Cox Proportional Hazards Regression which is used to relate predictors or covariates to survival time. The effect in this model in the context of basketball is then the probability of picking up the next foul which represents the risk of failure. We considered three covariates in our model player position (Guard, Forward, Big), number of fouls already
this game, and an indicator variable for $3+$ years of experience.
$\lambda(t \mid Z)=\lambda_{0}(t) \exp \left(\beta_{1} \cdot\right.$ Position $+\beta_{2} \cdot$ Fouls $+\beta_{3} \cdot I($ Seasons in League $\left.\geq 3)\right)$
Results of this approach serve primarily as a guideline due to the underlying assumption of constant hazard rate required by the model. Our dat review found this not to be the case in our data set for some of our variables, violating one of the assumptions of the Cox Proportional Hazard model.
Second Model: Survival Curves
The notion of survival curves can be applied to the problem of foul trouble by treating each foul as a death. A player is deemed to have survived at a given foul level if, at game's end, they have not obtained another foul. Following Evan's approach, we can then create survival curves for each player separated by a given foul number to incorporate "till" [1]. Though these curves are stepwise functions, they bare close resemblance to the ex ponential distribution (see Figure 1). We use this similarity to justify the fitting of exponential distributions to each set of curves, as done previousl by Evan's [1].

Figure 1: Rudy Gay's Foul Rate by current number
The algorithm for our approach then becomes:
Fit appropriate exponential distributions to each curve through numerical integration
Generate 5000 samples for each player from each of their foul level exponential distributions
. Calculate time to foul out for each of these simulations from foul j for player $i, \sum_{f=j}^{5} t_{i, f}$
. Bootstrap samples of size 1000 to estimate quantiles of the foul out distribution
The exponential distributions used are truncated at the maximum playing ime a player has spent at a given foul level in the training set (2014-2016). These are to be updated as players continue to surpass these values and add applet for coach and front office accessibility

Model Improvements

We would like to continue our work and extend our estimation of time to foul out through a Bayesian method. The foul rate (parameter λ) at each ers of the same position or defensive style and the likelihood function for the observed data at each foul level for each player. This would give us more stable estimates for those with small amounts of data. The defensive style categorization would be done through a clustering of a player's efensive tendencies. These tendencies could be defined by common foul

Applet Interaction
For practical in game use of the survival curve approach, an applet is required as the calculations are not as trivial as " $\mathrm{Q}+1$ ". To interface number of fouls each player has and is fed back the estimates on game time emaining. The Assistant Coach can then communicate the information to the Head Coach when necessary.

By providing sample quantile estimates, coaches can decide how aggresively or conservatively they want to manage a player's expected remaining lay time. An example of the applet. using the Sacramento Kings is pro play time. An exa
vided in Figure 2.

Figure 2: Foul Trouble Tool. Can be used live in games to update the time to foul ou
after a player picks up a foul. Used here on the $16-17$ roster of the Sacramento Kings.

Conclusions

Fouls are a long standing component of basketball that is governed by an archaic coaching rule dictating when a player should sit or play. Researchers close to the world of basketball have put forth alternatives such as survival curves, which we have worked to extend. By adding on a simula tion component to generate playing time bounds at given quantiles, coaches
now have better access to informed decision making. With the creation of the applet, all of this information is now available in the same time it would take to calculate the old " $\mathrm{Q}+1$ " rule.

References

[1] Evans, K. NBA Fouls - Survival Analysis. https:// causalkathy.com/2017/02/21/nba-fouls-survival[2] Falk, B. The Trouble with Foul Trouble trouble/, 2018. [Online; accessed April-2018]
[3] Klobuchar, A. NBA Foul-Substitution Analysis . http //aidanklobuchar.com/home/dat
[4] Maymin P. Maymin, A. and Shen E. How much trouble is early foul trouble? Strategically idling resources in the NBA. International Journal of Sport Finance, 7(4):324-339, 11201
[5] Rosenmai, P. Fitting an Exponential Curve to a Stepwise Survival Curve. https://eurekastatistics.com/fitting-an-exponential-curve-to-a-stepwise-survival curve/, 2016. [Online; accessed April-2018
[6] Saini, U. \& Evans, K. Extended NBA Play By Play Data. http: 2018].

Acknowledgements

A big thank you to Luke Bornn and his team at the Sacramento Kings for providing the opportunity to explore the exciting world of basketball anafor ther making her data publicly available.

